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The relativistic nature of the electron motion underlies the intrinsic part of the anomalous Hall effect,
believed to dominate in ferromagnetic �Ga,Mn�As. In this paper, we concentrate on the crystal band structure
as an important facet to the description of this phenomenon. Using different k · p and tight-binding computa-
tional schemes, we capture the strong effect of the bulk inversion asymmetry on the Berry curvature and the
anomalous Hall conductivity. At the same time, we find that it does not affect other important characteristics of
�Ga,Mn�As, namely, the Curie temperature and uniaxial anisotropy fields. Our results extend the established
theories of the anomalous Hall effect in ferromagnetic semiconductors.
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I. INTRODUCTION

The anomalous Hall effect was first observed in ferro-
magnets by Hall himself.1 Next to the usual Lorentz term,
a voltage proportional to magnetization appeared—much
smaller but still too large to be explained by an internal
magnetic field. Over the following years, this osten-
sibly plain dependence was to unveil the whole cornuco-
pia of physical phenomena, all arising from the relativis-
tic coupling of the charge and spin current.2,3 A class of
them is related to the spin asymmetry of carrier scattering,
viz., the skew-scattering4–6 and the side jump process.7–9

Also higher-order effects in the scattering amplitude were
predicted.2,5,10,11 However, it is the “intrinsic” mechanism,
first proposed by Karplus and Luttinger,12 that is believed to
play a key role in the Hall effect of ferromagnetic
semiconductors.13–18 Quite unusually, it does not concern the
changing of the occupations of Bloch bands by scattering on
impurities. Rather, it results from the interband coherence
caused by the universal tendency of physical systems to pro-
gressively increase the indeterminacy of their state. Hence,
the topological theory of the Berry phase19 was found to
provide an ample description.20,21

The topological model of the intrinsic anomalous Hall
effect describes the linear response of the carrier Bloch func-
tion � to the applied electric field E. It consists in the drift of
the k vector in the reciprocal space, during which ��k� ac-
quires a geometrical phase factor in addition to the dynami-
cal one. The Berry phase in the first factor can be expressed
as the action of the vector potential, with its curl called the
Berry curvature, ��k�. The latter is a well-defined gauge-
invariant quantity often pictured as a nonhomogeneous mag-
netic field living in k-space. It produces a local equivalent of
the Lorentz force, the so-called anomalous velocity term,
−eE��, in the semiclassical equations of motion.12,20 This
term contributes to the stationary part of the Boltzmann
transport equation �hence, it does not depend on the transport
relaxation time�, producing a dissipationless current trans-
verse to E. The anomalous Hall conductivity of this current
is proportional to the ensemble average of the carrier Berry

curvature, ���. Since � depicts the changes in the spin po-
larization during the carrier transport by the electric field,
which are caused by the spin-orbit coupling, it changes sign
under time-reversal symmetry. Thus, to obtain a finite value
of ���, this symmetry of the system must be broken.

The above semiclassical approach, taking into account the
complete geometrical Bloch state description, leads to an in-
tuitive picture of the origin and mechanism of the intrinsic
anomalous Hall effect in ferromagnetic semiconductors. It
applies to the weak scattering regime, where it was proven to
be formally equivalent to more systematic quantum-
mechanical techniques.22 In this framework, the anomalous
Hall conductivity was calculated for the p-d Zener model23

of a ferromagnetic semiconductor by Jungwirth et al.15 The
band structure of this model is composed of the six hole
bands described by the Kohn-Luttinger Hamiltonian with the
mean-field spin splitting, neglecting the spin-orbit induced
Rashba �linear in k� and Dresselhaus �k3� terms. While the
former, together with all terms linear in k, does not generate
the spin current,24 the latter does,25 which has not been hith-
erto studied in �Ga,Mn�As and related ferromagnets.

In this paper, we investigate the intrinsic anomalous Hall
effect �for our purposes called the AHE� in the p-d Zener
model of a diluted ferromagnetic semiconductor, focusing
on �Ga,Mn�As. This problem requires a complete descrip-
tion of the host band structure. We demonstrate it
numerically by using different k . p and tight-binding compu-
tational schemes described in Sec. II. We employ the
six-band23,26–28 and the eight-band k · p model including the
Dresselhaus splitting,29,30 and two empirical tight-binding
parameterizations31,32 �spds� and sps�� to describe the GaAs
band structure. The MnGa substitutions are introduced within
the mean-field and virtual-crystal approximations. In Sec. III,
we first calibrate the models so as to obtain the agreement of
two important characteristics of �Ga,Mn�As, the Curie tem-
perature and uniaxial anisotropy. Then, we calculate the
Berry curvature and the anomalous Hall conductivity to re-
veal qualitative differences between the calibrated models.
We even report a negative conductivity sign within the new
approaches, which was not observed in the previously em-
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ployed six-band k · p model.15 This result relates to the inver-
sion asymmetry of the zinc-blende lattice, inherited by the
Berry curvature. We provide the physical interpretation of
our findings and briefly discuss their experimental implica-
tions.

II. THEORETICAL APPROACH

We investigate AHE in a Hall sample of ferromagnetic
�Ga,Mn�As with the electric field E � x̂ and the magnetic field

applied along the �001̄� direction. This setup yields the
anomalous conductivity

�xy = −
e2

V�
��z� , �1�

where ��z�=�k,n�z�n ,k�fn,k, and fn,k is the Fermi-Dirac dis-
tribution associated with the band n and wave vector k. The
positive values of �xy mean that the anomalous Hall voltage
has the same sign as in the ordinary Hall effect.

The Berry curvature in Eq. �1� is given by

�z�n,k� = 2 Im��ky
un,k	�kx

un,k� , �2�

or by the equivalent Kubo formula �derived by differentiat-
ing the Schrödinger equation over k, which makes sense in
our finite-dimensional Hi1bert space�

�z�n,k� = 2 Im �
n��n

cnn�
y cn�n

x

��n,k − �n�,k�2 , �3�

where cnn�= �un,k	�kĤk	un�,k�, and un,k are the periodic parts
of the Bloch states with energies �n,k. Formula �2� may carry
large error even when we describe the Bloch wave functions
quite accurately because it involves their derivatives. For in-
stance, in the six-band k · p model,27,28 we obtain an almost
perfect description of the p-type bands around the � point,
but their derivatives in general include significant contribu-
tions from the states outside this space. On the other hand,
the sum in Eq. �3� goes over all bands, not just the hole
p-type ones. Even the detailed description of these bands
only is, therefore, not sufficient to calculate the Berry curva-
ture accurately. The model used must also have enough room
to allow for the inversion symmetry breaking, an important
property of GaAs lattice.33

For the above reasons, we expect the multiband tight-
binding models31,32 of the host band structure to be the most
appropriate for the description of the Berry curvature. They
automatically take into account the lack of inversion symme-
try as they distinguish Ga and As atoms. Contrary to the
perturbative k · p methods, they properly describe the Bloch
states away from the center of the Brillouin zone, which
makes them better suited to high hole concentrations. We use
the spds� Jancu31 and sps� di Carlo32 parametrizations, bas-
ing our numerical tight-binding implementation on the code
by Strahberger et al.,34 employed previously in the studies of
spin transport properties in modulated �Ga,Mn�As
structures.35,36

The impact of the inversion symmetry breaking on the
Berry curvature is additionally tested in the eight-band k · p

model with the Dresselhaus term included, following
Ostromek.30 He found that the magnitude of the Dresselhaus
spin splitting of the conduction band in GaAs depends on the
values of two poorly known parameters A� and B describing
the spin-independent and spin-orbit related k · p interaction of
the conduction band with remote bands, respectively. Two
sets of A� and B values reproduced the experimental magni-
tudes of spin splittings.30 We have adopted the set for which
A�=0 instead of the alternative one with A�=−14.7 eV Å,
which appears unrealistic.37 For the chosen parametrization,
at B=0 �inversion symmetry preserved� the remaining pa-
rameters correspond to the standard six-band k · p model:
�1=6.85, �2=2.9, �3=2.1, and spin-orbit splitting 	so
=0.341 eV. The k-dependent part of the spin-orbit interac-
tion has negligible effect on the investigated quantities, so
we neglect it for clarity.

The dispersion relations of the top of the valence band
calculated by the above methods are compared in Fig. 1.
There is a very good agreement between the most popular
six-band k · p and the most detailed spds� tight binding, as
well as the eight-band k · p model, while the results obtained
within sps� parameterization differ slightly.

The biaxial strain is included in particular computational
schemes by adding an appropriate Bir-Pikus matrix to the
six-band27,28 and to the eight-band k · p model38 or by chang-
ing the atoms arrangement in the tight-binding approaches,
according to the strain tensor values: 
xx=
yy =	a /a and

zz=−2c12 /c11
xx, where 	a is the strain-induced change of
the lattice constant a, and c12 /c11=0.453 is the ratio of elas-
tic moduli. Additionally, the on-site energies of the d orbitals
in the spds� parameterization depend linearly on the strain
tensor values.31

The AHE current flows in ferromagnetic �Ga,Mn�As, in
which a part of Ga atoms is substituted by Mn ions produc-
ing strong p-d hybridization. Each of them simultaneously
forms a magnetic moment S=5 /2 and creates one moder-
ately bound hole. The holes fill the GaAs valence band,
which is mostly of As p character, from top to bottom. Their
concentration p is taken into account by adjusting the Fermi
energy EF. To do it efficiently, we assume that the crystal has
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FIG. 1. �Color online� The top of the GaAs valence band with
spin splitting 	=−0.1 eV calculated by different methods. Hori-
zontal lines denote the positions of the Fermi level EF for the hole
densities 0.3 and 1.2 nm−3 in the spds� tight-binding model.
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a finite and very small volume V
107a0
3, and find the mini-

mum of the first n= pV occupied hole states’ energies. The
holes mediate ferromagnetic order between Mn spins via ex-
change interactions. Within the mean-field and virtual-crystal
approximations, which we employ in all computational
schemes, these interactions are spatially averaged. The con-
stant molecular field of Mn spins creates a k-dependent
Zeeman-like splitting of the host bands �Fig. 1�. This split-
ting for heavy holes in the � point is given by 	=xN0�S��,
where x is the part of cation sites N0 substituted by Mn with
an average spin �S�, and �=−0.054 eV nm3 is the p-d ex-
change integral.27 Usually, the 	 value is smaller than it
would result from the nominal Mn concentration. With in-
creasing Mn doping, a part of Mn atoms occupies interstitial
positions and tends to form pairs with substitutional ones,
characterized by very small net magnetic moment.39 They
can be removed by annealing, but the effective Mn concen-
tration will remain smaller. Additionally, unintentional de-
fects such as Mn interstitials and As antisites are double do-
nors and reduce the hole concentration.

In both k . p and tight-binding models, we have been able
to compute the derivatives of the Hamiltonian matrix in Eq.
�3� analytically, which significantly improves the accuracy of
our results. Formula �2� is equally suitable for numerical
computation, if we overcome the problems created by the
wave-function phase gauge freedom, which is cancelled ana-
lytically, but not numerically. One should simply fix the
phases of the relevant wave functions by dividing each of
them by the phase factor of its first nonzero basis coefficient.

III. RESULTS

A. Curie temperature and uniaxial anisotropy

We begin with the comparison of the band-structure mod-
els, looking at how they describe the two important charac-
teristics of the p-type hole bands, the Curie temperature TC
and uniaxial anisotropy field Hun.

The four models employed provide similar values of the
Curie temperature TC, presented in Fig. 2 for three different
Mn contents x, as a function of the hole concentration p.
While the six-band k · p and spds� tight-binding model give
virtually identical TC values, the remaining ones exhibit
some differences due to their parameterization flaws �Fig. 1�.
The slight discrepancy between the two best results for high
hole concentrations is resolved in favor of the more universal
tight-binding approach. Since TC is proportional to the ther-
modynamic spin density of states,23,27 we conclude that a
mutually consistent description of the relevant valence bands
is achieved throughout.

A nontrivial comparison between the used models is pro-
vided by evaluating the magnitude of the uniaxial magnetic
anisotropy field Hun brought about by biaxial strain.27,40 This
anisotropy is driven by the presence of the spin-orbit inter-
action in the carrier band. We calculate the magnitude of Hun
as proportional to the difference of the total carrier energy
for the easy and hard magnetization directions under 1% ten-
sile or compressive strain �see Ref. 27�. As presented in
Fig. 3, in a region of intermediate hole concentrations, the
easy axis takes the �001� direction for tensile strain, while it

is in the �001� plane for compressive strain. The situation is
opposite for lower and higher hole concentrations. These re-
sults agree between the models, especially for the spds�

tight-binding and the six-band k · p calculations. Conse-
quently, all models handle similarly well the spin-orbit split-
ting of the p-type valence bands.

B. Berry curvature and the related conductivity

According to the previous chapter we can characterize
both TC and Hun as static quantities, which depend on the
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properties of the six occupied p-type bands only. Details of
the other bands’ structure, in particular the Dresselhaus k3

splitting, do not influence their values. In marked contrast,
the derivatives and interband elements in the Berry curvature
formulas, Eqs. �2� and �3�, express the dynamic character
�related to the carrier drift caused by electric field� of the
AHE and lead to qualitative differences between the models.
Below we demonstrate the effect of the bulk inversion asym-
metry on the Berry curvature and consequently on the
anomalous conductivity trends.

The six-band k · p model describes the diamond lattice
structure. Since the Kohn-Luttinger Hamiltonian it uses is
invariant under space inversion, which is unitary, we have
��−k�=��k�. On the other hand, the antiunitarity of time-
reversal operator leads to ��−k�=−��k� in the presence of
the corresponding symmetry. Thus, the Berry curvature in
this model is always symmetric and vanishes in the absence
of magnetic fields, as presented in Fig. 4�a�, and no spin
current flows.

The eight-band k · p model contains, in addition, the s-type
conduction band with the Dresselhaus spin splitting included
by the use of Löwdin perturbation calculus.29,30 It results
from the inversion symmetry breaking in the zinc-blende
structure33 and thus, in the presence of the time-reversal
symmetry, leads to nonvanishing antisymmetric Berry curva-
tures �Fig. 4�b��. Then, the related k3 energy term in the
conduction-band spectrum accounts for a nonzero spin cur-
rent within the intrinsic spin Hall effect.25 When the mag-
netic field is on, the significant asymmetry of the curvatures
can still be observed.

The multiband tight-binding methods give us the detailed
band parameterization and introduce realistic symmetries of
the crystal lattice in a natural way. Figure 4�c� presents the
Berry curvatures obtained using the spds� parameterization.
Their symmetry is similar to the eight-band k · p model, but
the shape differs �especially for 	=0�, pointing to the sensi-
tivity of the spin topological effects to the subtleties of the
band structure.

An interesting effect is the formation of so-called diabolic
points corresponding to the energy bands’ crossings, best vis-
ible for �z�k� in the k � �001� direction �Fig. 4�c�, inset�. A
commonly held view is that it is them which are the source
of the anomalous Hall conductivity. Even though the degen-
eracies of states in the k-space do produce a nontrivial Berry
potential, it is easy to show that their contributions to �xy

vanish for T→0 K. The coefficients cnn�
xi in Eq. �3� are the

matrix elements of Hermitian operators �kxi
Ĥk, hence cnn�

xi

= �cn�n
xi ��. The conductivity is thus proportional to the sum

2 Im�
k

�
n�n�

cnn�
y cn�n

x

��n,k − �n�,k�2 �fn,k − fn�,k� . �4�

For �n,k��n�,k, a component of the above sum with given
�k ,n ,n�� has a nonzero contribution to �xy only if fn,k
� fn�,k, which for T→0 happens when one state is above and
another below the Fermi level EF. �Exploiting this observa-
tion in numerical computations ensures fast convergence of
calculated integrals.� The component corresponding to the
bands’ crossing is thus zero since fn,k= fn�,k in a neighbor-
hood of the diabolic point. For a diabolic point lying exactly
at the Fermi level, the same follows from the fact that the
crossing bands are always on the same side of EF in a neigh-
borhood of the diabolic point �which is always true for in-
vestigated systems, in which the Fermi level does not touch
the borders of the Brillouin zone�. Hence, for T→0 the dia-
bolic points have no singular contribution to the anomalous
Hall conductivity, which we also have confirmed numerically
for finite temperatures. It is clearly seen from Eqs. �2� and
�3� that the Berry curvature arises from the spin-orbit inter-
action. This is because Hamiltonians without the spin-orbit
coupling operator have real representations for all k. One can
then choose un,k which are entirely real for all k and do not
produce the Berry curvature. By the introduction of the spin-
orbit coupling, the Hamiltonian becomes complex, causing
the Berry curvature to arise. Yet, the diabolic points manifest
themselves, when passing the Fermi level, as kinks in the
conductivity �marked with an arrow in Fig. 5�.

The qualitative difference of the Berry curvature between
the models takes an effect on the anomalous Hall conductiv-
ity trends. The values of �xy in the k · p and tight-binding
approaches, computed for various hole concentrations p as a
function of the spin splitting 	, are presented in Figs. 5–9.
The results obtained within the particular models remain in
good agreement throughout the whole range of 	 values only
for low hole concentrations, p�0.3 nm−3. For higher carrier
densities, differences in the �xy values become significant,
particularly for small and intermediate spin splittings. Re-
markably, we obtain a negative sign of �xy within the eight-
band and tight-binding models �Figs. 6–9� in this range: the
higher the hole concentration, the wider the range of 	 for
which the negative sign persists. This is the effect of the
Dresselhaus splitting which increases with k, while for in-
creasing hole concentrations the states with high k-vectors
become occupied and contribute to the conductivity. How-
ever, strong enough spin splitting destroys the negative sign.
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This shows a dramatic and so far unnoticed influence of the
Dresselhaus term on the AHE in hole-controlled ferromag-
netic semiconductors.

It has been suggested41 that the influence of disorder on
the intrinsic AHE can be phenomenologically modeled by
substituting one of the energy differences in Eq. �3� with
�n,k−�n�,k+ i��. The scattering-induced broadening of bands
�� in �Ga,Mn�As at the localization boundary is presumably
of the order of the Fermi energy EF.42 It washes out the
Dresselhaus splitting and reduces the magnitude of its nega-
tive contribution to �xy, as shown in Fig. 8. However, this
approach is not without its own problems: the energy-level
broadening is but a part of equal-rank “extrinsic” terms in
the Kubo-Středa formalism,22 and its magnitude is typically
too large to treat its effect on the AHE perturbatively.

The sensitivity of the AHE to the details of the band struc-
ture suggests that it can be influenced by the biaxial strain.
Figures 5–9 contain the results on the anomalous Hall con-
ductivity in tensile and compressively strained �Ga,Mn�As
samples, 
xx=1% and 
xx=−1%. The �xy values tend to in-

crease in the first case and decrease in the latter in all mod-
els. As seen, small negative values are found already within
the six-band k · p model for the tensile strain. Additionally,
we checked that despite the overall sensitivity, the effect of
the temperature parameter in the Fermi-Dirac function on �xy
for a fixed value of spin splitting is negligibly small.

C. Comparison to experiment

Figure 10 compares the theoretical and experimental
results41,43 on the anomalous Hall conductivity for the set of
annealed samples with nominal Mn concentration x, hole
concentration p and biaxial strain 
xx. The calculations of the
k · p and tight-binding models corresponding to the experi-
mental parameters do not fit the measured points. The new
detailed theories, which include the inversion asymmetry of
the GaAs lattice, predict a negative sign of �xy for small Mn
contents x. At the same time, all the models predict the �xy
values larger than in the experiment for high Mn content x.
They are nevertheless significantly lowered by the—strong
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in this regime—biaxial strain, as shown by the comparison
with zero strain calculations for spds� tight-binding model
�diamonds�.

The much smaller than theoretical values of �xy for
samples with high Mn content may be connected to the pres-
ence of Mn interstitials,39 which do not form magnetic mo-
ments. The ones which survived the annealing process, as
suggested by the measured hole densities, compensate one
substitutional Mn spin each. As a result, the effective Mn
concentration is lower than the total Mn content used in our
calculations, which typically leads to lower �xy values. This
effect cannot explain the qualitative difference between the
new theories and experiment at low Mn concentrations.
However, some experimental data suggest that the negative
�xy can be found under conditions indicated by the present
computations.44

Additionally, the energy levels’ lifetime broadening,41 as a
part of scattering effects derived within the Kubo-Středa for-
malism, is taken into account in the spds� model �triangles�.
The broadening �� is taken to be the ratio of the total Mn
concentration N=4x /a0

3 and hole concentration p, times the
magnitude of Fermi energy, 	EF	. As mentioned before
�Fig. 8 and related text�, it is done in a rather phenomeno-
logical way, but nevertheless leads to much better agreement
with the experimental data.

IV. SUMMARY

We have compared four models of the �Ga,Mn�As band
structure with regards to their impact on Curie temperature,

uniaxial anisotropy and the intrinsic anomalous Hall effect.
We considered the eight-band k · p and two tight-binding
�spds� and sps�� parameterizations, and compared their re-
sults with the previously employed six-band k · p approach.
The first two quantities do not depend significantly on the
model used, a consequence of their static nature. On the
other hand, taking into account the details of the band struc-
ture beyond the six hole bands leads to qualitatively new
results on the anomalous Hall effect, which is dynamic. In
particular, the inversion asymmetry of the GaAs lattice de-
scribed by the Dresselhaus k3 term produces the negative
anomalous conductivity sign. Despite using the more de-
tailed models of the band structure, we have not obtained the
agreement with the experiment—indeed, moved away from
it. This is a symptom of the intrinsic AHE theory being in-
sufficient to describe the observed phenomenon. Possible ad-
ditional mechanisms which merit detailed investigation in-
clude scattering and localization. Their influence on the
anomalous Hall effect in ferromagnetic semiconductors will
certainly be the subject of future studies.
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